Defective Mitochondrial Metabolism Associated with Cancer

Structure of a mitochondrion

Structure of a mitochondrion Credit: Kelvinsong via Common Wikimedia

Mitochondrial metabolism

Mitochondrial metabolism constitutes central metabolism of the where end products of the glucose, amino acids and fats are catabolized through different routes and funneled into the citric acid cycle. Mitochondria are the powerhouse of the cell where most of the ATPs, the energy currency of the cell is produced. Most of the metabolic pathways, such as glucose metabolism through the citric acid cycle, fatty acid catabolism, metabolism of the carbon skeleton of amino acids all occur inside the mitochondria constituting mitochondrial metabolism.


It is well established that mitochondria are evolved from the hydrogen producing eubacteria that were engulfed by the hydrogen-dependent archaebacteria. Their symbiotic relationship about 2 million years ago led them to be evolved into the eukaryotic cell. During the course of evolution, mitochondria lost their most of the control over their self-regulation and transferred their control to the genomic DNA.

Now a day, mitochondria can perform only selected functions directed by their own DNA (mitochondrial DNA) such as the production of enzymes that are required for the mitochondrial metabolism and communication with the rest of the parts of the cells and other cells.

Besides the role of the mitochondrion in central metabolism, it acts as a gatekeeper of the cell and regulates the cell viability, programmed cell death and also controls the nuclear functions by producing reactive oxygen species, modulating the calcium levels, etc. Therefore, any deviation in the coordination between mitochondria and rest of the cell may cause different problems in the cellular homeostasis and even organismal dysfunction in higher organisms.

Any deregulation in the mitochondrial metabolism and its function has been related to the varieties of physiological disorders such as muscular degeneration, cardiovascular diseases, neurodegenerative disorders, and even cancer.

Dysfunction of mitochondria has historical relation with cancer that was much focused on defective mitochondrial metabolism. However, dysfunction of mitochondria to cancer goes more beyond the metabolism because mitochondrial dysfunction arises due to different mutations either in the nuclear or in the mitochondrial DNA. These mutations lead to the production of defective key metabolic enzymes that can initiate different cellular reprogramming responsible for the formation and growth of the tumor.

Different enzymes of the TCA cycle that are related with various types of cancers

Different enzymes of the TCA cycle that are related with various types of cancers. Image: Gaude and Christian, 2014

Defective TCA cycle enzymes related to various cancers

The citric acid (TCA) cycle is the central pathway of the mitochondrial metabolism that is a topic of interest in the field of oncology. Enzymes of the TCA cycle are encoded by the nuclear DNA and are located in the mitochondrial matrix (except for the succinate dehydrogenase that is embedded in the inner mitochondrial membrane). It has been reported that several enzymes of the TCA cycles are associated with different types of inherent and sporadic types of cancer.

Citrate synthase has been found overexpressed in pancreatic adenocarcinoma and renal oncocytoma. However, it has also been found deregulated in various cell lines of cervical cancer. Increase expression of citrate synthase leads to the overproduction of citrate that can be utilized for the biosynthesis of fatty acids as in pancreatic cancer while decreased expression of the citrate synthase triggers the glycolysis to support tumor growth.

Aconitate hydrolase or aconitase plays an important role in prostate cancer. In normal prostate cells, aconitase is inhibited by zinc leading to the accumulation of citrate while in prostate cancer cells the activity of aconitase is restored leading that constantly consumes the citrate to produce isocitrate and decrease the fatty acid biosynthesis.

Isocitrate dehydrogenase has been found that in B-acute lymphoblastic leukemia, prostate cancer, glioblastoma, NADPH-dependent isoforms of the mitochondrial isocitrate dehydrogenase are mutated. Mutated isocitrate dehydrogenase instead of converting isocitrate to α-ketoglutarate it converts α-ketoglutarate to R-enantiomer of 2-hydrooxyglutatate that is accumulated in the cancer cells.

Succinate dehydrogenase (complex II) that is the only enzyme that is a part of the TCA cycle as well as respiratory chain and it is fully encoded by the nuclear DNA. It is found to be mutated in different types of cancers such as the gastrointestinal stromal tumor, breast cancer, renal carcinoma etc. Succinate dehydrogenase-deficient cells accumulate succinate that inhibits the pyruvate dehydrogenase complex as well as DNA and histone demethylases leading to the epigenetic changes in the cancerous cell.

Fumarate hydratase is found to be mutated in the hereditary leiomyomatosis and renal cell cancer (HLRCC). It is also found to be downregulated in the glioblastoma and sporadic clear cell carcinoma. Fumarate in the same way as succinate inhibits several enzymes such as pyruvate dehydrogenase complex, histone, and DNA demethylases.

Different enzyme complexes of the electron transport chain associated with various cancers

Different enzyme complexes of the electron transport chain associated with various cancers. Image: Gaude and Christian, 2014

Defective enzymes of electron transport chain

Mitochondrial DNA is a circular double stranded DNA with 16596 base pairs. It contains 37 genes that can be translated into 13 subunits of the enzymes of electron transport chain and ATP complex, 22 tRNAs and 12S and 16S ribosomal RNAs. Mitochondrial DNA mutation can coexist with normal mitochondrial DNA in a heterogeneous form called as heteroplasmy. Mitochondrial mutations cal lead to several defects related with bioenergetics from mild mitochondrial dysfunction to several impairments and even cell death. Mitochondrial mutations are associated with a wide range of cancers such as colon cancer, breast cancer, lung cancer liver and pancreatic cancer.

Complex I or NADH:ubiquinone oxidoreductase catalyzes the transfer of  two electrons from NADH to ubiquinone via FMN and it also promotes the transfer  of 4 protons from the matrix to the intermembrane space. It is the first electron carrier in the electron transport chain that produces reactive oxygen species.

Therefore, mutations in the mitochondrial gene encoding the complex I is associated with the development of colon cancer, thyroid, and pancreatic cancer and many more types of cancers. Mutant complex I is also associated with the increase ROS-dependent metastasis of lung carcinoma, breast cancer, etc. The main contribution of the mutant complex I depends on the corresponding dysfunctional bioenergetics.

Complex III or coenzyme Q:cytochrome c oxidoreductase of cytochrome bc1 is the third enzyme of the electron transport chain that reduces the  ubiquinone to cytochrome c and pumps out 4 protons from matrix to the intermembrane space. Mutant complex III is also associated with different cancers such as colorectal cancer, ovarian cancer, thyroid cancer, bladder cancer etc. where it exerts its effect by lactate secretion, increased production of ROS and resistance to the NF-ĸB2 pathway activated apoptosis.

Complex IV or cytochrome c oxidase is the terminal complex of the electron transport chain that is composed of 12 subunits. Subunit I, II and III are encoded by the mitochondrial DAN while rests are encoded by nuclear DNA. Complex IV catalyzes the conversion of molecular oxygen into the water while pumping 4 protons from the matrix to the intermembrane space. It is also associated with cancers such as mutant subunit I (COX1) of complex IV is linked with ovarian cancer and prostate cancer while nuclear DNA-encoded subunits are normally upregulated in cancers.

Complex V or ATP synthase is the end enzyme of the oxidative phosphorylation, but it is not the part of electron transport chain. It catalyzes phosphorylation of the ADP to ATP. During pumping out of the protons from matrix to the intermembrane space, an electrochemical gradient is created. To maintain the electrochemical gradient, protons are transported back into the matrix through the complex V during which ATPs are synthesized from the ADP.

It has been found that mutations in the complex V subunits are associated with various cancers such as thyroid cancer, pancreatic cancer, and prostate cancer. Mutant ATP synthase (complex v) is also associated with the reduced programmed cell death (reduced apoptosis). Though ATP synthase is not related with the transport of electrons, its inhibition can lead to the leakage of electrons from the electron transport chain.

Reference: Cancer and Metabolism (Defects in mitochondrial metabolism and cancer)

Article doi: 10.1186/2049-3002-2-10

The following two tabs change content below.
As an owner of this site, I want to contribute a little support to the users by providing relevant information about biochemistry and related fields with relevant reference. Please donate us if you find our articles informative.
Loading Disqus Comments ...
Loading Facebook Comments ...

No Trackbacks.